数据库锁完整总结

数据库锁完整总结

数据库锁出现的原因是为了处理并发问题,因为数据库是一个多用户共享的资源,当出现并发的时候,就会导致出现各种各样奇怪的问题,就像程序代码一样,出现多线程并发的时候,如果不做特殊控制的话,就会出现意外的事情,比如“脏“数据、修改丢失等问题。所以数据库并发需要使用事务来控制,事务并发问题需要数据库锁来控制,所以数据库锁是跟并发控制和事务联系在一起的。

平时会经常看到或者听到数据库锁有“共享锁”,“排它锁”,“互斥锁”,“写锁”,“读锁”,“悲观锁”,“乐观锁”,“行级锁”,“表级锁”,“页级锁”等,同时我们还会常看到“丢失修改“,”不可重复读“,”读脏数据“这三个术语,他们究竟是什么关系以及怎么理解呢,下面就来介绍一下他们。

先说事务的特性,要想成为事务,必须满足:ACID(原子性,一致性,隔离性,持久性)四特性,事务是恢复和并发控制的基本单位。原子性指的是事务是数据库的逻辑工作单位,事务中操作要么都做,要么都不做;一致性指的是事务的执行结果必须是使数据库从一个一致性状态变大另一个一致性状态,一致性和原子性是密切相关的;隔离性指的是一个事务执行不能被其他事务干扰;持久性指的是一个事务一旦提交,他对数据库中数据的改变就是永久性的。

一、悲观锁和乐观锁:并发控制一般采用三种方法,分别是乐观锁悲观锁以及时间戳

1、乐观锁认为一个用户读数据的时候,别人不会去写自己所读的数据;悲观锁就刚好相反,觉得自己读数据库的时候,别人可能刚好在写自己刚读的数据,其实就是持一种比较保守的态度;时间戳就是不加锁,通过时间戳来控制并发出现的问题。

2、悲观锁就是在读取数据的时候,为了不让别人修改自己读取的数据,就会先对自己读取的数据加锁,只有自己把数据读完了,才允许别人修改那部分数据,或者反过来说,就是自己修改某条数据的时候,不允许别人读取该数据,只有等自己的整个事务提交了,才释放自己加上的锁,才允许其他用户访问那部分数据。乐观锁就比较简单了,就是不做控制,这只是一部分人对于并发所持有的一种态度而已。时间戳就是在数据库表中单独加一列时间戳,比如“TimeStamp”,每次读出来的时候,把该字段也读出来,当写回去的时候,把该字段加1,提交之前 ,跟数据库的该字段比较一次,如果比数据库的值大的话,就允许保存,否则不允许保存,这种处理方法虽然不使用数据库系统提供的锁机制,但是这种方法可以大大提高数据库处理的并发量,因为这种方法可以避免了长事务中的数据库加锁开销(操作员A 和操作员B操作过程中,都没有对数据库数据加锁),大大提升了大并发量下的系 统整体性能表现。

3、需要注意的是,乐观锁机制往往基于系统中的数据存储逻辑,因此也具备一定的局 限性,如在上例中,由于乐观锁机制是在我们的系统中实现,来自外部系统的用户 余额更新操作不受我们系统的控制,因此可能会造成脏数据被更新到数据库中。在 系统设计阶段,我们应该充分考虑到这些情况出现的可能性,并进行相应调整(如 将乐观锁策略在数据库存储过程中实现,对外只开放基于此存储过程的数据更新途 径,而不是将数据库表直接对外公开)。

二、排它锁和共享锁:以上悲观锁所说的加“锁”,其实分为几种锁,分别是:排它锁和共享锁,其中排它锁又称为写锁,共享锁又称为读锁。(ps.可以参考《数据库锁机制》),共享锁和排它锁是具体的锁,是数据库机制上的锁,存在以下关系:

(x表示是排它锁(Exclusive),s表示共享锁(Share),Y表示yes,N表示no)

上图表示可以共存的锁,如,第二行表示,一个事务T1给某数据加了X锁,则事务T2就不能再给那数据加X锁了,同时也不能再加S锁了,只有到T1事务提交完成之后,才可以。默认来说,当sql脚本修改更新某条记录的时候,会给该条记录加X锁,读的话加的是S锁。

另外,并发操作会导致数据的不一致性,主要包括“丢失数据”,“不可重复读”,“读脏数据等。(详细可看 王珊 版 数据库系统概论第十一章 并发控制)。

三、活锁和死锁:还有就是,并发控制会造成活锁和死锁,就像操作系统那样,会因为互相等待而导致。

1、活锁指的是T1封锁了数据R,T2同时也请求封锁数据R,T3也请求封锁数据R,当T1释放了锁之后,T3会锁住R,T4也请求封锁R,则T2就会一直等待下去,这种处理方法就是采用“先来先服务”策略;

2、死锁就是我等你,你又等我,双方就会一直等待下去,比如:T1封锁了数据R1,正请求对R2封锁,而T2封住了R2,正请求封锁R1,这样就会导致死锁,死锁这种没有完全解决的方法,只能尽量预防,预防的方法有:①一次封锁发,指的是一次性把所需要的数据全部封锁住,但是这样会扩大了封锁的范围,降低系统的并发度;②顺序封锁发,指的是事先对数据对象指定一个封锁顺序,要对数据进行封锁,只能按照规定的顺序来封锁,但是这个一般不大可能的。另外,系统如何判断出现死锁呢,毕竟出现死锁不能一直干等下去,要及时发现死锁同时尽快解决出现的死锁,诊断和判断死锁有两种方法,一是超时法,二是等待图法。超时法就是如果某个事物的等待时间超过指定时限,则判定为出现死锁;等待图法指的是如果事务等待图中出现了回路,则判断出现了死锁。对于解决死锁的方法,只能是撤销一个处理死锁代价最小的事务,释放此事务持有的所有锁,同时对撤销的事务所执行的数据修改操作必须加以恢复。

四、MySQL中的行级锁、表级锁、页级锁:在DBMS中,可以按照锁的粒度把数据库锁分为行级锁(INNODB引擎)、表级锁(MYISAM引擎)和页级锁(BDB引擎 )。

1、行级锁:行级锁是Mysql中锁定粒度最细的一种锁,表示只针对当前操作的行进行加锁。行级锁能大大减少数据库操作的冲突。其加锁粒度最小,但加锁的开销也最大。行级锁分为共享锁 和 排他锁。

特点:开销大,加锁慢;会出现死锁;锁定粒度最小,发生锁冲突的概率最低,并发度也最高。

2、表级锁:表级锁是MySQL中锁定粒度最大的一种锁,表示对当前操作的整张表加锁,它实现简单,资源消耗较少,被大部分MySQL引擎支持。最常使用的MYISAM与INNODB都支持表级锁定。表级锁定分为表共享读锁(共享锁)表独占写锁(排他锁)

特点:开销小,加锁快;不会出现死锁;锁定粒度大,发出锁冲突的概率最高,并发度最低。

3、页级锁:表级锁是MySQL中锁定粒度介于行级锁和表级锁中间的一种锁.表级锁速度快,但冲突多,行级冲突少,但速度慢。所以取了折衷的页级,一次锁定相邻的一组记录。BDB支持页级锁

特点:开销和加锁时间界于表锁和行锁之间;会出现死锁;锁定粒度界于表锁和行锁之间,并发度一般

MySQL常用存储引擎的锁机制

  • MyISAM和MEMORY采用表级锁(table-level locking)
  • BDB采用页面锁(page-level locking)或表级锁,默认为页面锁
  • InnoDB支持行级锁(row-level locking)和表级锁,默认为行级锁

4、Innodb中的行锁与表锁

前面提到过,在Innodb引擎中既支持行锁也支持表锁,那么什么时候会锁住整张表,什么时候或只锁住一行呢?InnoDB行锁是通过给索引上的索引项加锁来实现的,这一点MySQL与Oracle不同,后者是通过在数据块中对相应数据行加锁来实现的。InnoDB这种行锁实现特点意味着:只有通过索引条件检索数据,InnoDB才使用行级锁,否则,InnoDB将使用表锁!在实际应用中,要特别注意InnoDB行锁的这一特性,不然的话,可能导致大量的锁冲突,从而影响并发性能。行级锁都是基于索引的,如果一条SQL语句用不到索引是不会使用行级锁的,会使用表级锁。行级锁的缺点是:由于需要请求大量的锁资源,所以速度慢,内存消耗大。

5、行级锁与死锁

MyISAM中是不会产生死锁的,因为MyISAM总是一次性获得所需的全部锁,要么全部满足,要么全部等待。而在InnoDB中,锁是逐步获得的,就造成了死锁的可能。在MySQL中,行级锁并不是直接锁记录,而是锁索引。索引分为主键索引和非主键索引两种,如果一条sql语句操作了主键索引,MySQL就会锁定这条主键索引;如果一条语句操作了非主键索引,MySQL会先锁定该非主键索引,再锁定相关的主键索引。 在UPDATE、DELETE操作时,MySQL不仅锁定WHERE条件扫描过的所有索引记录,而且会锁定相邻的键值,即所谓的next-key locking。当两个事务同时执行,一个锁住了逐渐索引在等待其他相关索引,一个锁定了非主键索引,在等待主键索引。这样就会发生死锁。发生死锁后,InnoDB一般都可以检测到,并使一个事务释放锁回退,另一个获取锁完成事务。

有多种方法可以避免死锁,这里只介绍常见的三种,具体如下

1)如果不同程序会并发存取多个表,尽量约定以相同的顺序访问表,可以大大降低死锁机会。

2)在同一个事务中,尽可能做到一次锁定所需要的所有资源,减少死锁产生概率;

3)对于非常容易产生死锁的业务部分,可以尝试使用升级锁定颗粒度,通过表级锁定来减少死锁产生的概率;

 

参照:

1)http://www.cnblogs.com/ismallboy/p/5574006.html

2)http://www.jb51.net/article/77485.htm

发表评论

电子邮件地址不会被公开。 必填项已用*标注

此站点使用Akismet来减少垃圾评论。了解我们如何处理您的评论数据